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A novel hybrid method coupling genetic programming and orthogonal least squares, called GP/OLS, was
employed to derive new ground-motion prediction equations (GMPEs). The principal ground-motion
parameters formulated were peak ground acceleration (PGA), peak ground velocity (PGV) and peak
ground displacement (PGD). The proposed GMPEs relate PGA, PGV and PGD to different seismic
parameters including earthquake magnitude, earthquake source to site distance, average shear-wave
velocity, and faulting mechanisms. The equations were established based on an extensive database of
strong ground-motion recordings released by Pacific Earthquake Engineering Research Center (PEER).
For more validity verification, the developed equations were employed to predict the ground-motion
parameters of the Iranian plateau earthquakes. A sensitivity analysis was carried out to determine the
contributions of the parameters affecting PGA, PGV and PGD. The sensitivity of the models to
the variations of the influencing parameters was further evaluated through a parametric analysis.
The obtained GMPEs are effectively capable of estimating the site ground-motion parameters. The
equations provide a prediction performance better than or comparable with the attenuation relation-
ships found in the literature. The derived GMPEs are remarkably simple and straightforward and can

reliably be used for the pre-design purposes.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and background

Seismic hazard analysis is one of the fundamental steps in
engineering phase. The seismological characteristics of earth-
quakes commonly include magnitude, distance, faulting type,
and soil effects. The engineering parameters of an earthquake
can be divided into two main classes: (1) time-domain para-
meters and (2) response-domain parameters. Peak ground accel-
eration (PGA), peak ground velocity (PGV) and peak ground
displacement (PGD) are the major time-domain class parameters.
In the response domain, pseudo spectral acceleration (PSA) is the
well-known parameter. Both classes of the time- and response-
domain parameters can be applied to the risk assessment of
structures. It has been demonstrated that the spectral parameters
are more efficient than the time-domain parameters (Luco and
Cornell, 2007). On the other hand, application of the time-domain
parameters is more convenient due to their independency from
the considered structures. Thus, PGA, PGV and PGD are commonly
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used in the seismic hazard studies. Various methods may be
employed to estimate these elements such as on-site investiga-
tion and physical modeling. Implementing these methods is
usually extensive, cumbersome and costly (Giillii and Ercelebi,
2007). Much effort is often made to describe limited observations
through the physical modeling of the earthquake process. In this
approach, the observations are used for the calibration of the
physical model. Such models are usually developed in the context
of stochastic modeling approach and random vibration theory
(see e.g., Papageorgiou and Aki, 1983). More advanced physical
models try to model the realistic process of faulting through the
numerical modeling of crack and wave propagation (e.g., Krishnan
et al., 2006).

Ground-motion prediction equations (GMPEs) play a critical role
in the seismic hazard analysis. The GMPEs relate the ground-motion
parameters to various independent variables such as earthquake
magnitude, distance from source to site, local site conditions,
earthquake source characteristics, and wave propagation (Kramer,
1996; Douglas, 2003; Giillii and Ercelebi, 2007). Other physical
parameters such as stress drop, rupture propagation, directivity,
basin effects, and nonlinear soil behavior are not generally used in
the predictive models (Somerville and Graves, 2003). Correlating
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PGA, PGV and PGD with the predictor parameters in a mathematical
form is not an easy task due to high nonlinearity in the relationships.
A conventional way to construct the GMPEs from the recorded
strong-motion data is to use the regression analysis (e.g., Ambraseys
et al,, 1996; Boore et al., 1997; Boore and Atkinson, 2007; Campbell
and Bozorgnia, 2007). In each form, a simple statistical model may
be developed to describe the tendency of the ground-motion
parameters with other parameters at the station. In addition to
the physical aspects (Douglas, 2003, 2004; Giilli and Ergelebi, 2007),
the significant limitations of the statistical techniques strongly affect
the capabilities of the regression-based GMPEs. Most commonly
used regression analyses can have large uncertainties. It has major
drawbacks for idealization of complex processes, approximation,
and averaging widely varying prototype conditions. Another impor-
tant issue is due to the limitation of this method. The regression
analysis tries to model the nature of the corresponding problem by a
pre-defined linear or nonlinear equation (Gandomi et al., 2010a).
Another major constraint in application of the regression analysis is
the assumption of normality of residuals. Thus, the developed
attenuation models are often limited in their ability to reliably
simulate the complex behavior of the ground-motion parameters
(Gilli and Ercelebi, 2007). The issues raised above suggest the
necessity of employing more comprehensive methods to decrease
errors for the ground-motion parameters estimates.

Artificial neural networks (ANNs) are the well-known pattern
recognition methods. Recently, considerable researches have been
carried out to estimate the strong-motion characteristics via
ANNSs. Kerh and Chu (2002) employed ANNs to estimate PGA at
two main line sections of Kaohsiung Mass Rapid Transit in
Taiwan. They also compared the ANN-based results with those
of available empirical formulas in the literature. Chu et al. (2003)
developed a neural network model by employing historical
seismic records to analyze the strong-motion characteristics
around the Kaohsiung area of Taiwan. Kerh and Ting (2005) used
back-propagation neural networks to predict PGA along the high-
speed rail system in Taiwan. Giilli and Ercelebi (2007) and
Gunaydin and Gunaydin (2008) developed PGA prediction models
using ANNs based on the strong-motion data from Turkey.
However, ANNs are not usually able to produce practical predic-
tion equations. Moreover, they require the structure of the net-
work to be identified a priori. The ANN method is mostly
appropriate to be used as a part of a computer program.

Genetic programming (GP) (Koza, 1992) is a new approach
with completely new characteristics and traits. GP is an extension
of genetic algorithms. It may generally be defined as a supervised
machine learning technique that searches a program space
instead of a data space. The programs generated by GP are
represented as tree structures and expressed in the functional
programming language (Koza, 1992). The main advantage of the
GP-based approaches over the regression and ANN techniques is
their ability to generate prediction equations without assuming
prior form of the relationship. The developed equations can be
easily manipulated in practical circumstances (Gandomi et al.,
2010a, 2011). Many researchers have employed GP and its
variants to find out any complex relationships among the experi-
mental data (e.g., Johari et al.,, 2006; Gandomi et al., 2010a,b,
2011; Alavi et al., 2010; Alavi and Gandomi, 2010). Some of the
limited scientific efforts directed at applying GP to the analysis of
the ground-motion parameters include prediction of PGA using
the strong ground-motion data from Turkey (Cabalar and Cevik,
2009), and developing new predictive equations for the ratio of
PGV to PGA (Kermani et al., 2009).

Orthogonal least squares (OLS) algorithm (Billings et al., 1988)
is an effective algorithm to determine which terms are significant
in a linear-in-parameters model. The OLS algorithm introduces
the error reduction ratio, which is a measure of the decrease in

the variance of output by a given term. Madar et al. (2005)
combined GP and OLS to make a hybrid algorithm with better
efficiency. It was shown that introducing this strategy into the GP
process results in more robust and interpretable models. Some of
the limited researches with the specific objective of applying the
GP/OLS method to civil engineering problems have recently
conducted by Gandomi and Alavi (in press) and Gandomi et al.
(2010a).

In this paper, the hybrid GP/OLS technique is utilized to derive
new linear-in-parameters GMPEs. GP/OLS is useful in deriving
prediction equations for PGA, PGV and PGD by directly extracting
the knowledge contained in the experimental data. The predictor
variables included in the analysis were earthquake magnitude,
earthquake source to site distance, average shear-wave velocity,
and types of faulting mechanisms (strike-slip, normal, and
reverse). The performance of the developed GMPEs were com-
pared with that of the previously published empirical models
(e,g., Sadigh and Egan, 1998; Nowroozi, 2005; Campbell and
Bozorgnia, 2007; Rajabi et al., 2010). The GMPEs were developed
based on a comprehensive database of the strong ground-motions
assembled by PEER (Power et al., 2006).

2. Genetic programming

GP is a modern regression technique with a great ability to
automatically evolve computer programs. The evolutionary pro-
cess followed by the GP algorithm is inspired from the principle of
Darwinian natural selection. GP was introduced by Koza (1992)
after experiments on symbolic regression. This classical GP
technique is also called tree-based GP (Koza, 1992; Alavi et al.,
2011). The main difference between the GA and GP approaches is
that in GP the evolving programs (individuals) are parse trees
rather than fixed-length binary strings. The traditional optimiza-
tion techniques, like GA, are generally used in parameter optimi-
zation to evolve the best values for a given set of model
parameters. GP, on the other hand, gives the basic structure of
the approximation model together with the values of its para-
meters. GP optimizes a population of computer programs accord-
ing to a fitness landscape determined by a program ability to
perform a given computational task. GP is relatively a new field
of pattern recognition methods in contrast with GA. A survey
of the literature reveals the growing interest of the research
community in GP (Alavi et al.,, 2011).

In GP, a random population of individuals (trees) is created to
achieve high diversity. The symbolic optimization algorithms pre-
sent the potential solutions by structural ordering of several
symbols (Gandomi et al., 2010a). A population member in GP is a
hierarchically structured tree comprising functions and terminals.
The functions and terminals are selected from a set of functions and
a set of terminals. For example, the function set F can contain the
basic arithmetic operations (+, —, x, /, etc.), Boolean logic func-
tions (AND, OR, NOT, etc.), or any other mathematical functions. The
terminal set T contains the arguments for the functions and can
consist of numerical constants, logical constants, variables, etc. The
functions and terminals are chosen at random and constructed
together to form a computer model in a tree-like structure with a
root point with branches extending from each function and ending
in a terminal. An example of a simple tree representation of a GP
model is illustrated in Fig. 1 (Gandomi et al., 2010a).

The creation of the initial population is a blind random search
for solutions in the large space of possible solutions. Once a
population of models has been created at random, the GP
algorithm evaluates the individuals, selects individuals for repro-
duction, generates new individuals by mutation, crossover, and
direct reproduction, and finally creates the new generation in all
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Fig. 1. The tree representation of a GP model (Log(a+3)).

iterations (Koza, 1992; Gandomi et al., 2010a). During the cross-
over procedure, a point on a branch of each solution (program) is
selected at random and the set of terminals and/or functions from
each program are then swapped to create two new programs as
can be seen in Fig. 2 (Gandomi et al., 2010a). The evolutionary
process continues by evaluating the fitness of the new population
and starting a new round of reproduction and crossover. During
this process, the GP algorithm occasionally selects a function or
terminal from a model at random and mutates it (see Fig. 3). The
best program that appeared in any generation, the best-so-far
solution, defines the output of the GP algorithm (Koza, 1992). In
the following subsections, the coupled algorithm of GP and OLS,
GP/OLS, is briefly described.

2.1. Genetic programming for linear-in-parameters models

In general, GP creates not only nonlinear models but also
linear-in-parameters models. In order to avoid parameter models,
the parameters must be removed from the set of terminals. That
is, it contains only variables: T={xq(k), ..., xi(k)}, where x;(k)
denotes the ith repressor variable. Hence, a population member
represents only F; nonlinear functions (Pearson, 2003). The para-
meters are assigned to the model after “extracting” the F; function
terms from the tree, and determined using a least squares (LS)
algorithm (Reeves, 1997). A simple technique for the decomposi-
tion of the tree into function terms can be used. The sub-trees,
representing the F; function terms, are determined by decompos-
ing the tree starting from the root as far as reaching nonlinear
nodes (nodes which are not “+” or “—"). As can be seen in Fig. 4
(Gandomi et al., 2010a), the root node is a “+” operator; therefore,
it is possible to decompose the tree into two sub-trees of “A” and
“B”. The root node of the “A” tree is again a linear operator;
therefore, it can be decomposed into “C” and “D” trees. As the
root node of the “B” tree is a nonlinear node (/), it cannot be
decomposed. The root nodes of “C” and “D” trees are also non-
linear. Consequently, the final decomposition procedure results in
three sub-trees: “B”, “C”, and “D”. According to the results of the
decomposition, it is possible to assign parameters to the func-
tional terms represented by the obtained sub-trees. The resulted
linear-in-parameters model for this example is y: po+pi(x2+x1)/
Xo+P2Xo+p3x1 (Gandomi et al., 2010a).

GP can be used for selecting from special model classes, such
as a polynomial model. To achieve it, the set of operators must be
restricted and some simple syntactic rules must be introduced.
For instance, if the set of operators is defined as F={ x, +} and
there is a syntactic rule that exchanges the internal nodes that are
below a “ x ”-type internal nodes to “ x "-type nodes, GP will
generate only polynomial models (Madar et al., 2004, 2005;
Gandomi et al., 2010a).

“

2.2. Orthogonal least squares algorithm

The great advantage of using linear-in-parameter models is
that the LS method can be used for identifying the model
parameters. This is much less computationally demanding than
other nonlinear optimization algorithms, because the optimal
p=[p1, ..., pm]" parameter vector can analytically be calculated:

p=U"D'U, 1

in which y=[y(1), ..., ¥(N)]" is the measured output vector and
the U regression matrix is

Ui (x(1)) Um(x(1))
U= . : (2)

Un(x(N))

The OLS algorithm (Billings et al., 1988) is an effective algorithm
for determining which terms are significant in a linear-in-para-
meters model. The OLS technique introduces the error reduction
ratio (err), which is a measure of the decrease in the variance of
output by a given term. The matrix form corresponding to the
linear-in-parameters model is

Us (x(N))

y:Up+€ (3)

where the U is the regression matrix, p is the parameter vector, and
e is the error vector. The OLS method transforms the columns of the
U matrix into a set of orthogonal basis vectors to inspect the
individual contributions of each term (Cao et al., 1999; Gandomi
et al,, 2010a). It is assumed in the OLS algorithm that the regression
matrix U can be orthogonally decomposed as U=WA, where A is an
M x M upper triangular matrix (i.e., Aj=0 if i>j). Wis an Nx M
matrix with orthogonal columns in the sense that WTW=D is a
diagonal matrix (N is the length of the y vector and M is the number
of repressors). After this decomposition, the OLS auxiliary parameter
vector g can be calculate as

g=D Wy “

where g; represents the corresponding element of the OLS solution
vector. The output variance (y"y)/N can be described as

M
yy=> gwiw+ele 5)
i=1

Therefore, the error reduction ratio [err]; of the U; term can be
expressed as
g2wliw

y'y
This ratio offers a simple mean for order and selects the model

terms of a linear-in-parameters model on the basis of their
contribution to the performance of the model.

[err]; =

©)

2.3. Hybrid genetic programming-orthogonal least squares
algorithm (GP/OLS)

The application of OLS to the GP algorithm leads to significant
improvements in the performance of GP. The main feature of this
hybrid approach is to transform the trees to simpler trees which
are more transparent, but their accuracies are close to the original
trees (Gandomi et al.,, 2010a). In this coupled algorithm, GP
generates a lot of potential solutions in the form of a tree
structure during the GP operation. These trees may have better
and worse terms (sub-trees) that contribute more or less to the
accuracy of the model represented by the tree. OLS is used to
estimate the contribution of the branches of the tree to the
accuracy of the model, whereas, using the OLS, one can select
the less significant terms in a linear regression problem.
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Parent 1 Parent 2

—

Crossover

Child 1 Child 2

Fig. 2. Typical crossover operation in GP.

Fig. 3. Typical mutation operation in GP.

Fig. 4. Decomposition of a tree to function terms (Madar et al., 2004).

Pruning

Fig. 5. Pruning of a tree with OLS.

According to this strategy, terms (sub-trees) having the smallest
error reduction ratio are eliminated from the tree (Pearson, 2003).
This “tree pruning” approach is realized in every fitness evalua-
tion before the calculation of the fitness values of the trees. Since
GP works with the tree structure, the further goal is to preserve
the original structure of the trees as far as it possible. The GP/OLS
method always guarantees that the elimination of one or more
function terms of the model can be done by pruning the
corresponding sub-trees, so there is no need for structural
rearrangement of the tree after this operation. The way the
GP/OLS method works on its basis is simply demonstrated in

Fig. 5 (Gandomi et al., 2010a). Assume that the function which
must be identified is y(x)=0.8(ux,1)2+1.2yx,1 —0.9y,_>-0.2. As
can be seen in Fig. 5, the GP algorithm finds a solution with four
terms: (Ux_1)% Yx—1, Yx_2, Ux_1 X Ux_>. Based on the OLS algo-
rithm, the sub-tree with the least error reduction ratio
(F4=uy_q x Ux_>) is eliminated from the tree. Subsequently, the
error reduction ratios and mean square error values (and model
parameters) are calculated again. The new model (after pruning)
may have a higher mean square error but it obviously has a more
adequate structure (Gandomi et al., 2010a).

3. Modeling of time-domain strong ground-motion
characteristics

The damage potential of earthquakes is dependent on the
ground-motion characteristics and local site condition. Ampli-
tude, frequency content and duration of motion are the significant
characteristics of earthquake motion (Kramer, 1996). The ground-
motion parameters have essential roles in explaining the char-
acteristics of strong ground-motions. PGA, PGV and PGD are the
commonly used time-domain parameters of ground-motions.
These parameters are frequently presented in quantitative forms
as functions of different seismic variables. The most significant
seismological aspects that influence the ground-motion para-
meters are the source effect, path effect and site effect. The
source effect is related to numerous parameters such as the level
of stress drop in the earthquake event, mechanism of faulting, and
direction of faulting. The influence of these parameters is not
similar and strongly depends on the distance of the desired site
from the fault. Especially, for relatively distant sites, it is not
needed to consider the complex form of the faulting procedure
(e.g., the hanging-wall effect). The path effect is related to the
distance of the site from the fault. Different definitions are
proposed for the distance in the literature (e.g., closest distance,
Joyner-Boore distance, etc.) in different GMPEs (Boore and
Atkinson, 2007). The site effect is also reflected in the attenuation
relations as a significant element. Some of the models consider
the site effect in a generic way (i.e., soil or rock) and the others
uses the soil shear velocity as an indicator of the site effects.
However, the modern GMPEs are mainly in terms of the earth-
quake magnitude, source to site distance, geotechnical condition
of site, and faulting mechanism (e.g., Boore et al., 1997; Boore and
Atkinson, 2007; Campbell and Bozorgnia, 2007). Other affecting
physical parameters such as stress drop, rupture propagation,
directivity, and nonlinear soil behavior significantly reflect the
uncertainties and therefore, they are not generally considered in
the development of the predictive equations (Somerville and
Graves, 2003; Cabalar and Cevik, 2009).
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To enhance the precision of the conventional regression-based
analyses, several novel methods have recently been employed.
The main purpose of this study is to derive alternative prediction
equations for PGA, PGV and PGD using the GP/OLS approach. The
most important factors representing the ground-motion para-
meters behavior were selected based on the literature review
(e.g., Douglas, 2003; Ambraseys et al., 1996; Boore et al., 1997;
Boore and Atkinson, 2007; Campbell and Bozorgnia, 2007; Giilli
and Ercelebi, 2007; Boore and Atkinson, 2008; Cabalar and Cevik,
2009; Kermani et al., 2009; Rajabi et al., 2010). Consequently, the
formulations of PGA (cm/s?), PGV (cm/s) and PGD (cm) were
considered to be as follows:

In(PGA), In(PGV), In(PGD) = f(Mw, In(Rjp), In(Vs30),F) (7)

where M,, is the earthquake magnitude (moment magnitude); Ry,
(km) is the closest distance to the surface projection of the fault
plane (Joyner-Boore distance). R;, is approximately equal to the
epicentral distance for events of M,, <6 (Boore and Atkinson,
2007); Vs30 (m/s) is the average shear-wave velocity over the top
30 m of site

F is the coefficient representing different fault types:

e Reverse (dip slip with hanging-wall side up).
e Normal (dip slip with hanging-wall side down).
e Strike-slip (horizontal slip).

The significant influence of the above predictor variables in
determining PGA, PGV and PGD is well understood. Indicator
variables representing the style of faulting are defined in terms of
rake angle. The rake angle is described as the average angle of slip
in degrees measured in the plane of rupture between the strike
direction and the slip vector (Campbell and Bozorgnia, 2007).
Majority of the existing GMPEs introduce empirically derived
coefficients for different fault types rather than directly including
the faulting mechanism categories in the model development
(see Douglas, 2004; Campbell and Bozorgnia, 2007). A similar
procedure is followed in this study. PGA, PGV and PGD were first
formulated in terms of My, Rj», and Vs3o using GP/OLS. Thereafter,
empirical coefficients for different faulting mechanisms were
obtained using GAs.

3.1. Strong-motion database and data preprocessing

Source of the strong ground-motion data employed for
the developing the GMPEs was the database compiled in the
PEER-NGA project by Power et al. (2006) (NGA Flatfile V 7.3). The
database is comprised of shallow crustal earthquakes recorded
data at active tectonic regions of the world. The database covers a
broad range of magnitude and distance. It is optional for
researchers to use the entire database or to limit their analyses
to selected subsets. In this study, a part of the database was
excluded from the analysis considering some of the filtering
strategies presented by Boore and Atkinson (2007). Data sets
missing the required information and also the duplicate records
were excluded from the analysis. Finally, out of the total of 3551
records, 2777 records for reverse (dip slip with hanging-wall side
up), normal (dip slip with hanging-wall side down), and strike-
slip (horizontal slip) fault types were employed for the model
development. The predictor variables included in the analysis
were My, Rj, (km), Vs30 (m/s), and F. PGA, PGV and PGD were the
ground-motion parameters to be formulated. Fig. 6 shows the
distribution of the data used to develop the predictive equations.
For more visualization, the data are presented by frequency
histograms (Fig. 7). The ranges and statistics of different para-
meters involved in the modeling process are given in Table 1. As
can be seen in this table, the ranges of the predictor variables is

81 a
>
7 o a
=
= ] 8
5 < Normal
OStrike-Slip
A Reverse
4
0.1 1 10 100 1000

R;j, (km)

Fig. 6. Distribution of the data used for the model development, differentiated by
fault type.

relatively wide, particularly for magnitude and distance. The
wideness of the ranges has an important role in the GP-based
seismic hazard analysis.

For the GP/OLS analyses, the data sets were randomly divided
into training (learning and validation) and testing subsets. The
learning data were taken for the training of the algorithm (genetic
evolution). The validation data were used to specify the general-
ization capability of the models on data they did not train on
(model selection). Thus, both of the learning and validation data
were involved in the modeling process and were categorized into
one group referred to as “training data” (Alavi et al., 2011). The
testing data were finally employed to measure the performance of
the models obtained by GP/OLS on the data that played no role in
building the models. In order to obtain a consistent data division,
several combinations of the training and testing sets were
considered. The selection was such that the maximum, minimum,
mean and standard deviation of parameters were consistent in
the training and testing data sets. Of the 2777 data, 2361 data
were used for the training process (1945 for learning data and 416
for validation) and 416 data sets were taken for the testing of the
generalization capability of the models.

3.2. Performance measures

The best GMPEs were chosen on the basis of a multi-objective
strategy as below

(i) The simplicity of the model, although this was not a pre-
dominant factor.
(ii) Providing the best fitness value on a learning set of data.
(iii) Providing the best fitness value on a validation set of data.

The first objective can be controlled by the user through the
parameter settings (e.g., maximum program depth). For the other
objectives, the following objective function (OBJ) was constructed
as a measure of how well the model predicted output agrees with
the measured output. The selections of the best models were
deduced by the minimization of the following function:

OBJ _ <NOLearning_NOValidation> RMSELeaming + MAELearning

. 2
NOTrammg RLearning
2N0Validation RIVIS]-:‘Valid;:ztion + MAEValidation (8)
L. 2
NOTrammg RValidation

where NOjearning, NOvalidation ald NOrpaining are, respectively, the
number of learning, validation and training data; R, RMSE and
MAE are, respectively, correlation coefficient, root mean squared
error and mean absolute error given in the form of formulas as
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Table 1
Descriptive statistics of the variables used for the model development.
Parameter My, Rjp (km) Vs3o (M/s) F PGA (cm/s?) PGV (cm/s) PGD (cm)
Mean 6.55 73.34 386.07 - 78.84 9.38 493
Standard error 0.01 0.96 3.28 - 2.08 0.24 0.18
Median 6.30 63.49 345.42 1 42.19 4.89 145
Standard deviation 0.59 50.55 172.73 - 109.42 12.65 9.57
Sample variance 0.35 2555.43 29837.37 - 11972.19 160.09 91.66
Kurtosis -0.70 3.18 10.23 - 33.88 14.47 62.32
Skewness 0.82 1.38 2.12 - 4.43 3.28 5.65
Range 2.70 365.11 1899.78 2 1628.83 117.04 188.30
Minimum 5.20 0.03 116.35 1 1.14 0.10 0.01
Maximum 7.90 365.14 2016.13 3 1629.97 117.14 188.32
follows: Table 2
— _ Parameter settings for the GP/OLS algorithm.
_ S 1 (hi—h)(ti—F)
R= ©) P t Setti
n T2 N =2 arameter ettings
\/Ei:1 (hi—hi)” 37— (ti—t) s
Function set + = x|
S (h-—t-)z Population size 500-1000
RMSE = | &i=11"" (10) Maximum tree depth 12
n Maximum number of evaluated individuals 250
Maximum number of evaluated individuals 250
1E Generation 100
MAE = n Z |hi7ti| an Type of selection Roulette-wheel

i=1
in which h; and t; are, respectively, the actual and predicted
output values for the ith output, h; is the average of the actual
outputs, and n is the number of sample. It is well-known that the
R value alone is not a good indicator of prediction accuracy of a
model. This is because that by shifting the output values of a
model equally, the R value will not change. The constructed
objective function takes into account the changes of R, RMSE
and MAE together. Higher R values and lower RMSE and MAE
values result in lower OB] and, consequently, indicate a more
precise model. In addition, the above function considers the
effects of different data divisions for the learning and
validation data.

3.3. Model development using GP/OLS

The available database was used for generating the PGA, PGV
and PGD prediction equations. Various parameters are involved in
the GP/OLS predictive algorithm. The parameter selection signifi-
cantly affects the generalization capability of the derived GP/OLS-
based GMPEs. The parameter settings for the GP/OLS algorithm
are shown in Table 2. In order to obtain simple and straightfor-
ward formulas, four basic arithmetic operators (+, —, x, /) were
utilized in the analysis. The number of programs in the population
that GP/OLS will evolve is set by the population size. A run will
take longer with a larger population size. The number of genera-
tion sets the number of levels the algorithm will use before the
run terminates. The proper numbers of population and generation
depend on the complexity of the problem. In this study, a fairly
large number of initial population and generations were tested to
find models with minimum error. The program was run until the
runs terminated automatically. Mutation and crossover rate are
the probabilities that an offspring will be subject to the mutation
and crossover operations. The values of both of these parameters
for the optimal models were 50%. The maximum tree depth
directly influences the size of the search space and the number
of solutions explored within the search space. The success of the
GP/OLS algorithm usually increases with increasing these para-
meters. In this case, the complexity of the evolved function

Point-mutation
One-point (2 parents)

Type of mutation
Type of crossover

Type of replacement Elitist
Probability of crossover 0.5
Probability of mutation 0.5

Probability of changing terminal-non-terminal nodes 0.25
(vice versa) during mutation

increases and the speed of the algorithm decreases. The max-
imum tree depth was set to an optimal value of 12 as a tradeoff
between the running time and the complexity of the evolved
solutions. The other involved parameters values were selected
based on some previously suggested values (Gandomi et al.,
2010a; Gandomi and Alavi, 2010; Madar et al., 2004) and also
after a trial and error approach.

3.3.1. GP/OLS-based ground-motion prediction equations

The peak ground acceleration (PGA), velocity (PGV) and dis-
placement (PGD) prediction equations, for the best results by the
GP/OLS algorithm, are as given below

In(PGA)(cm/s%) = 7.673—1.28(In(V30) " Fo)/Mw) 4 Fren (12)
In(PGV)(cm/s) = —3.37 4+ 1.059M,—0.02(In(Ry)

+1In(Rjp)In(Vs30)) + Fpoy (13)

In(PGD)(cm) = —1.973+1.917M,, +7.82 InRp) |\ oo (14)
In(Vs30)

where My, Rj,, and Vi3, respectively, denote the earthquake magni-
tude, earthquake source to site distance, and average shear-wave
velocity. Fpga, Fpgy, and Fpgp are the empirical coefficients derived for
different fault types. These coefficients are presented in Table 3.
Comparisons of the measured and predicted PGA, PGV and PGD
values are, respectively, shown in Figs. 8-10.
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4. Performance analysis and model validity

Based on a logical hypothesis (Smith, 1986), if a model gives
R> 0.8, and the error values (e.g., RMSE and MAE) are at the
minimum, there is a strong correlation between the predicted and
measured values. The model can therefore be judged as very good.
It can be observed from Figs. 8-10 that the GP/OLS models with
high R and low RMSE and MAE values are able to predict the
target values to an acceptable degree of accuracy. Meanwhile, it is
noteworthy that the RMSE and MAE values are not only low but
also as similar as possible for the training and testing sets. This
suggests that the proposed models have both predictive ability
(low values) and generalization performance (similar values)
(Pan et al., 2009).

It is known that the models derived using the ANNs, GP, or
other soft computing tools, in most cases, have a predictive
capability within the data range used for their development. This
is because of the nature of these techniques which distinguishes
them from the other conventional techniques. Thus, the amount
of data used for the modeling process is an important issue, as it
bears heavily on the reliability of the final models. To cope with
this limitation, Frank and Todeschini (1994) argue that the
minimum ratio of the number of objects over the number of
selected variables for model acceptability is 3. They also suggest
that considering a higher ratio equal to 5 would be safer. In
the present study, this ratio is much higher and is equal to
2777/3=925.7. The PGD prediction results are slightly better
than those of PGA and PGV. Furthermore, new criteria recom-
mended by Golbraikh and Tropsha (2002) were checked for the
external validation of the models on the test data sets. It is
suggested that at least one slope of regression lines (k or k')
through the origin should be close to 1. Also, the performance
indexes of m and n should be lower than 0.1. Either the squared
correlation coefficient (through the origin) between predicted and

Table 3
The coefficients derived for different fault types.

Fault type F
PGA PGV PGD
Reverse 0.046 0.001 —0.037
Normal —0.059 -0.371 -0.372
Strike-Slip —0.101 0.080 0.236
a
10 4 L
Ideal fit P
- \:\/’,
-E 8 9 e
54 .
= =
< ]
& s .
=
£
Tz 41
o
>
E-]
s 2 4
£ * R=0836
R RMSE =0.598
MAE =0.478
0 v v T v \
0 2 4 6 8 10
Measured In(PGA) (cm/s?)
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experimental values (R2), or the coefficient between experimental
and predicted values (R'2) should be close to 1 (Alavi et al., 2011).
The considered validation criteria and the relevant results
obtained by the models are presented in Table 4. As it is seen,
the proposed models satisfy the required conditions. This con-
firms that the derived GMPEs are strongly valid, have the predic-
tion power and are not chance correlations.

5. Sensitivity and parametric analyses

Sensitivity analysis is of utmost concern for selecting the
important input variables. The contribution of each predictor
variable in the GP/OLS-based GMPEs was evaluated through a
sensitivity analysis. For this aim, frequency values of the input
variables were obtained. A frequency value equal to 1.00 for an
input indicates that this variable has been appeared in 100% of the
best thirty programs evolved by GP/OLS. This methodology is a
common approach in the GP-based analyses (Gandomi et al.,
20104, 2011). The frequency values of the predictor variables are
presented in Fig. 11. According to these results, it can be found
that the ground-motion parameters are more sensitive to M,,
followed by Rj, and V3. These are expected cases and go arm in
arm with the ground-motions behavior.

A parametric analysis was also performed in this study to
verify the robustness of the GP/OLS prediction equations. The
parametric analysis investigates the response of the predicted
ground-motion parameters from the GMPEs to a set of hypothe-
tical input data. The methodology is based on the change of only
one predictor variable at a time while the other seismic variables
are kept constant at the average values of their entire data sets. A
set of synthetic data for the single varied parameter is generated
by increasing the value of this in increments. These variables are
presented to the prediction equations and PGA, PGV and PGD are
calculated. This procedure is repeated using another variable until
the model response is tested for all input variables. The robust-
ness of the design equations is determined by examining how
well the predicted PGA, PGV and PGD values agree with the
underlying physical behavior of the investigated system (Kuo
et al., 2009). Figs. 12-14, respectively, present the tendency of the
PGA, PGV and PGD predictions to the variations of the seismic
parameters, My, Rjb, and Vi3o. The results of the parametric
analysis indicate that PGA, PGV and PGD continuously increase
due to increasing M, and decrease with increasing R, and Vi3o.
The parametric analysis results are soundly expected cases
from a seismological viewpoint (Ambraseys et al., 1996;

o

10 4 ’,

Predicted In(PGA) (cm/s?)

R=0811
. RMSE =0.637
i MAE = 0.488

0 2 a 6 8 10
Measured In(PGA) (cm/s?)

Fig. 8. Measured versus predicted PGA values using the GP/OLS model: (a) training data and (b) testing data.
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Table 4
Statistical parameters of the GP/OLS models.
Item Formula Condition PGA PGV PGD
1 R 0.8 <R 0.811 0.813 0.831
2 S thixty 0.85<k<1.15 0.999 0.901 1.002
k= —ishm—
3 K Z[:t‘;nixm 0.85 <k <1.15 0.975 0.978 0.702
4 m= Bk m<0.1 —-0.519 —0.453 —0.448
5 — B-R2 n<0.1 —0.500 —-0.511 —-0.307
- K
where R—1- PO “"}1?’22 and b —k x & 1.000 0.960 1.000
PINCED! !
, " - , 0.987 0.999 0.903
Rﬁ:l—%and =k xh
Boore et al., 1997; Boore and Atkinson, 2007; Campbell and 1.2 W PGA " PGV ® PGD
Bozorgnia, 2007). The above results confirm that the proposed
design equations are robust and can confidently be used for o 0.9
predictive purposes in seismic hazard studies. 2
5 06
=
&
6. Comparison of the ground-motion prediction equations 0.3
A comparison of the GP/OLS-based GMPEs developed in this study 0.0
with all of the existing ground-motion models is beyond the scope of M, R;, (km) Vo (ms)

this study. The results obtained in this research are compared with
those provided by the well-known models of Sadigh and Egan (1998)

Fig. 11. Contributions of the predictor variables in the GP/OLS-based GMPEs.
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Fig. 13. Parametric analysis of PGV in the GP/OLS-based GMPE.

for the prediction of PGA, PGV and PGD. As a part of the PEER Next
Generation Attenuation of Ground Motion (NGA) Project, Campbell
and Bozorgnia (2007) and Boore and Atkinson (2008) developed
updated prediction equations for PGA, PGV and PGD. The results of
these recent researches have also been included in the comparative
study. It is notable that the Boore and Atkinson’s models were
established for the PGA and PGV prediction. The performance of the
models was evaluated on a well-known database provided

by Haselton and Deierlein (2007). The database contains 78 records
for different earthquakes. A reduced subset of these records has been
used in the Applied Technology Council Project 63 (ATC, 2008), which
is focused on developing a procedure to validate seismic provisions
for structural design. The performance statistics of the PGA,
PGV and PGD prediction models are visualized in Figs. 15-17. As
can be observed from Fig. 15, the proposed prediction equation for
PGA is able to reach a prediction performance comparable with the



A.H. Gandomi et al. / Engineering Applications of Artificial Intelligence 24 (2011) 717-732 727
a b
100.00 y 1000.0
+— Reverse l +— Reverse
—— Normal —— Normal
—— Strike-Slip s 100.0 3 —— Strike-Slip

E 10.00 ¢ L 2 'é\ i
L ‘4 ) !
A A 2 A 10.0
o] s o]
A 1.00 ¢ v's ~

ol 1.0 N

0.10 o 014
4.5 5.5 6.5 7.5 0 80 160 240 320 400
M, Ry, (km)
Cc
10.0
—e— Reverse
Normal
—— Strike-Slip

E

2 e

A 1.0 .

O TTh— —_—

(=W —_—

0.1
100 500 900 1300 1700 2100

V3o (m/s)

Fig. 14. Parametric analysis of PGD in the GP/OLS-based GMPE.

NGA’s GMPEs and the model proposed by Sadigh and Egan (1998).
Considering the results for the PGV prediction, it can be seen in Fig. 16
that the GP/OLS-based GMPE with RMSE and MAE values equal to
0.565 and 0.455 performs superior than the other models. As shown
in Fig. 17, the performance of the proposed PGD prediction
equation (RMSE=0.696, MAE=0.570) is considerably better than
the NGA’s GMPEs and Sadigh and Egan’s model.

Despite the good performance the NGA models, they are
complicated equations with long linear or nonlinear terms. These
models include several predictor (independent) variables. The
involved variables are moment magnitude, one or more of the
fault distance measures, indicator variables for style of faulting,
hanging-wall parameters, shear-wave velocity, one or more of the
sediment depth parameters, and the depth to the top of coseismic
rupture. On the other hand, the high-precision GMPEs obtained
by means of GP/OLS are significantly short and straightforward.
This is mainly because of the important role of the tree pruning
process in the GP/OLS algorithm. Note that the GP/OLS equations
are developed using only four predictor variables (M, Rjb, Vs30
and F) and therefore they can easily be used via hand calculations.
As more data become available, including those for other main-
shocks or up-to-date NGA strong-motion data, these GMPEs can
be improved to make more accurate predictions for a wider range.
Also, the user physical insight and the shape of the classical
GMPEs can be regarded in making propositions on the elements
and structure of the evolved functions.

Most of the existing GMPEs are derived by performing the
multiple regression analysis (e.g., the NGA models). The signifi-
cant limitations of the conventional regression analysis have
previously described. Such models often assume linear, or in
some cases nonlinear, relationships between the ground-motion
parameters and the predictor variables, which is not always true.
In most cases, the best models developed using the commonly
used regression approach are obtained after controlling just some
equations established in advance. Thus, they cannot efficiently
consider the interactions between the dependent and indepen-
dent variables. One of the major advantages of the GP/OLS
approach over the traditional regression analysis is its ability to

derive explicit relationships for PGA, PGV and PGD without
assuming prior forms of the existing relationships. The best
solutions (equations) evolved by this technique are determined
after controlling numerous preliminary models, even millions of
linear and nonlinear models (Alavi et al., 2011).

However, it is notable that the GP-based methods are extremely
parameter sensitive, especially when difficult experimental training
data sets like the one used in this paper are employed. Using any
form of optimally controlling the parameters of the run (e.g., GAs),
can significantly improve the performance of their algorithms. Also,
one of the main goals of introducing expert systems, such as the
GP-based approaches, into the design processes is better handling of
the information in the pre-design phase. The initial steps of design are
based on imprecise and incomplete information about the features
and properties of targeted output or process (Kraslawski et al., 1999;
Alavi et al,, 2011). Nevertheless, it is idealistic to have some initial
estimates of the outcome before performing any extensive laboratory
or field work. The GP/OLS approach employed in this research is
based on the data alone to determine the structure and parameters of
the model. Thus, the derived GMPEs are considered to be mostly valid
for use in preliminary design stages and should cautiously be used for
final decision-making. For more reliability, the results of the GP/OLS-
based analyses are suggested to be compared with those obtained
using deterministic methods.

7. Validity verification

To further verify the validity of the GP/OLS-based GMPEs, they
were employed to predict the ground-motion parameters for addi-
tional records from the Iranian plateau earthquakes. The verification
data covers a fairly wide range of magnitudes and distances for rock
and soil sites in Iran. Comparisons of the PGA, PGV and PGD
predictions made by the GP/OLS models and attenuation models
developed by Zare et al. (1999), Khademi (2002), Nowroozi (2005),
and Rajabi et al. (2010) for Iran are presented in Fig. 18. As can be
seen in these figures, the proposed GMPEs give a sound basis for
simulation of the ground-motions parameters for earthquakes of
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Fig. 15. Comparison of the PGA predictions made by different models.

magnitude 5.0-7.7, and distances ranging from 0-123 km. The PGD
prediction equation provides the best performance followed by the
PGV and PGA equations. The GP/OLS model for PGA prediction
remarkably outperforms the previously published empirical models
which are specifically developed for the Iranian earthquakes.

8. Summary and conclusion

In this research, high-precision GMPEs were derived using the

hybrid GP/OLS method. The proposed GMPEs were developed
based on an extensive database of thousands of records compiled
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Fig. 16. Comparison of the PGV predictions made by different models.

in the PEER-NGA project. The following conclusions may be
drawn based on the results presented:

(i) The developed GMPEs give reliable estimates of the PGA, PGV

and PGD values. The PGD prediction equation provides

slightly better results compared with the PGA and PGV
models. The models efficiently satisfy the conditions of
different criteria considered for their external validation.

(ii) Mw, R, Vs30, and F were found to be efficient representative
of behavior of the strong ground-motion parameters.
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Fig. 17. Comparison of the PGD predictions made by different models.

(iii) The sensitivity and parametric analyses guarantee that the
proposed GMPEs efficaciously take into account the under-
lying physical relations governing the system. The sensitivity
and parametric results clearly indicate that the derived
GMPEs are not mere combinations of the predictor variables
which best fit the experimental results.

(iv) Further verification was done by benchmarking the proposed
equations against the GMPEs proposed by Sadigh and Egan
(1998), Campbell and Bozorgnia (2007) and Boore and
Atkinson (2008). The nonlinear GP/OLS equation for the
PGA prediction provides a prediction performance compar-
able with these regression-based models. The proposed PGV
and PGD prediction equations produce notably better out-
comes over the existing GMPEs.

(v) The GP/OLS-based GMPEs can reliably be used for practical pre-
planning and design purposes since they were developed upon
on a comprehensive database with wide range properties. The
proposed equations are remarkably simple and provide useful
alternatives to the more complicated equations provided by

NGA. The GMPEs are considered to be mostly valid for use in the
western United States and in other similar tectonically active
regions of shallow crusting faulting worldwide.

(vi) The data recorded during some real earthquakes at different
Iranian sites were used to validate the derived GMPEs. The
verification phase confirms the efficiency of the GMPEs for their
general application to the simulation of the ground-motions.

Further research can be focused on identifying other predictor
variables and incorporating them into the model development.
For instance, the rake angle or dummy variables representing
styles of faulting may directly be included into the analysis. The
energy input is another important response parameter closely
related to the damage potential of the earthquake (Zahrah and
Hall, 1984; Benavent-Climent et al., 2010). Therefore, this para-
meter can be studied as an effective intensity measure in
probabilistic seismic hazard analysis procedure. Also, the earth-
quake source effect and the geometrical spreading are two critical
issues that can modify the current empirical approach.
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Fig. 18. Comparison of the PGA, PGV and PGD predictions made by different models for the verification data.
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