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a b s t r a c t

In this study, a robust variant of genetic programming, namely gene expression programming (GEP), is
utilized to build a prediction model for the load capacity of castellated steel beams. The proposed model
relates the load capacity to the geometrical and mechanical properties of the castellated beams. The
model is developed based on a reliable database obtained from the literature. To verify the applicability
of the derived model, it is employed to estimate the load capacity of parts of the test results that were
not included in the modeling process. The external validation of the model was further verified using
several statistical criteria recommended by researchers. A multiple least squares regression analysis is
performed to benchmark the GEP-based model. A sensitivity analysis is further carried out to determine
the contributions of the parameters affecting the load capacity. The results indicate that the proposed
model is effectively capable of evaluating the failure load of the castellated beams. The GEP-based design
equation is remarkably straightforward and useful for pre-design applications.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of electrical welding technology in steel
construction, the castellated steel beam (CSB) became available to
structural engineers. The CSB, initially known as the ‘‘Boyd beam’’,
was first used in 1910 [1], and then designed and manufactured
in the early 1930s as roof beams in Czech Republic. The initial
inspiration for the elastic and plastic calculation methods were
respectively introduced in 1942 and the early 1970s. Castellation
is the procedure of cutting the web of a rolled section in a zigzag
pattern [2]. One of the halves is turned round and welded to the
other half. This procedure increases the depth of the original beam
(h) by the depth of the cut (d). As shown in Fig. 1, CSBs are often
made from I sections by the castellation process. This shape fits
the dictionary definition of castellated as ‘‘castle-like’’. According
to Zirakian and Showkati [3], the basic reasons for the fabrication
of the castellated beams are as follows.

I. Augmentation of section height, resulting in the enhancement
of moment of inertia, section modulus, stiffness, and flexural
resistance of sections;
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II. Decreasing the weight of structures;
III. Optimum use of existing profiles;
IV. By-passing the used plate girders; and
V. The passage of services through the web openings.

The seven potential failure modes generally associated with the
castellated beams are as follows [4].

i. Flexure mechanism formation;
ii. Overall beam lateral–torsional buckling;
iii. Vierendeel mechanism formation;
iv. Welded joint rupture in the web;
v. Web post-shear bucking;
vi. Web post-compression buckling; and
vii. Tee compression buckling.

These modes are of two different categories. The first two modes
are similar to the corresponding modes for solid-web beams and
may be analyzed in almost identical fashions. Modes iii to vii are
specific to castellated beams, since they are associated with the
tees andwebposts that boundopenings. There is a clear correlation
between mode iv and shear failure, and between mode vi and
the buckling solid web. However, it is necessary to develop new
analytical models for modes iii to vii. Detailed explanations for
these failure modes can be found in [5].

Knowles [6] showed that the failure load predicted using
a column in compression approach adopting Blogett’s force
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Fig. 1. Castellation process in a CSB.

distribution model and an effective length factor would provide a
good agreement with the experimental results. In this approach,
the web post is treated as a column having a width equal to the
narrowestwidth of theweb, a length equal to the clear height of the
castellation, and a thickness equal to theweb thickness. Themodel
recommended in BS 449, Clause 28a, is for 45° dispersion angle.
Applying BS 449 to CSBs requires the consideration of the width to
thickness ratio in order that the section can be correctly classified
for local buckling. The rules apply only to sections castellated to
the profile adopted in the UK. Althoughmany of the rulesmaywell
apply to other types of section, they have not been fully approved.
This is particularly true with unrestrained beams [7].

Developments in computational software and hardware have
enabled several alternative computer-aided data mining ap-
proaches to emerge. As an example, pattern recognition systems
learn adaptively from experience and extract various discrimina-
tors. Artificial neural networks (ANNs) are the most widely used
pattern recognition procedures. ANNs have been applied to assess
different characteristics of steel beams [8–10]. Despite the accept-
able performance of ANNs, they do not commonly give a particular
function to estimate the outcome using the input values.

Genetic programming (GP) [11] is an alternative approach for
behavior modeling of structural engineering problems. GP may
generally be defined as a supervised machine learning technique
that searches a program space instead of a data space [12,13].
Many researchers have employed GP and its variants to discover
complex relationships among experimental data [13–16]. Gene
expression programming (GEP) [17] is a recent extension of
GP. GEP evolves computer programs of different sizes and
shapes encoded in linear chromosomes of fixed length. The GEP
chromosomes are composed ofmultiple genes, each gene encoding
a smaller subprogram. The GEP approach has been shown to
be an efficient alternative to traditional GP [17,18]. There have
been some scientific efforts directed at applying GEP to structural
engineering tasks [19–21].

The main purpose of this paper is to utilize the GEP technique
to build a predictive model for the failure load of CSBs. A reliable
database of previously published CSB test results is utilized to
develop the model. The performance of the derived model is
subsequently compared with that of a regression-based model.

2. Genetic programming

GP is a subset of genetic algorithms (GAs) with a great ability
to automatically evolve computer programs. The evolutionary pro-
cess followed by GP is inspired by the principle of Darwinian natu-
ral selection. GP was introduced by Koza [11] after experiments on
symbolic regression. The main difference between GP and a GA is
the representation of the solution. The GP solutions are computer
programs that are represented as tree structures and expressed in
a functional programming language (like LISP) [11]. A GA creates
a string of numbers that represent the solution. In other words, in
GP, the evolving programs (individuals) are parse trees than can
vary in length throughout the run rather than fixed-length binary
strings. Traditional optimization techniques, such as the GA, are
generally used in parameter optimization to evolve the best val-
ues for a given set of model parameters. GP, on the other hand,
gives the basic structure of the approximationmodel togetherwith

Fig. 2. Tree representation of a GP model (X1 + 3/X2)
2 .

the values of its parameters [22,23]. GP optimizes a population of
computer programs according to a fitness landscape determined
by a program’s ability to perform a given computational task. The
fitness of each program in the population is evaluated using a fit-
ness function. Thus, the fitness function is the objective function
GP aims to optimize [23,24].

This classical GP approach is referred to as tree-based GP. A
population member in tree-based GP is a hierarchically structured
tree comprising functions and terminals. The functions and
terminals are selected from a set of functions and a set of terminals.
For example, the function set F can contain the basic arithmetic
operations (+, −, ×, /, etc.), Boolean logic functions (AND, OR,
NOT, etc.), or any other mathematical functions. The terminal set
T contains the arguments for the functions and can consist of
numerical constants, logical constants, variables, etc. The functions
and terminals are chosen at random and constructed together
to form a computer model in a tree-like structure with a root
point with branches extending from each function and ending in a
terminal. An example of a simple tree representation of a GPmodel
is illustrated in Fig. 2 [23].

GEP is a linear variant of GP. The linear variants of GP make
a clear distinction between the genotype and the phenotype of
an individual. Thus, the individuals are represented as linear
strings [13,18].

2.1. Gene expression programming

GEP is a natural development of GP first invented by
Ferreira [17]. Most of the genetic operators used in GAs can also
be implemented in GEP with minor changes. GEP consists of five
main components: function set, terminal set, fitness function, con-
trol parameters, and termination condition [13]. Unlike the parse-
tree representation in conventional GP, GEP uses a fixed length of
character strings to represent solutions to the problems, which are
afterwards expressed as parse trees of different sizes and shapes.
These trees are called GEP expression trees (ETs). One advantage
of the GEP technique is that the creation of genetic diversity is
extremely simplified, as genetic operators work at the chromo-
some level. Another strength of GEP is its uniquemultigenic nature,
which allows the evolution of more complex programs composed
of several subprograms [13]. Each GEP gene contains a list of sym-
bolswith a fixed length that can be any element from a function set
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Fig. 3. Example of expression trees (ETs).

such as {+, −, ×, /,
√

} and a terminal set such as {X1, X2, X3, 3}.
The function set and the terminal set must have the closure prop-
erty: each function must be able to take any value of data type
which can be returned by a function or assumed by a terminal. A
typical GEP gene with the given function and terminal sets can be
as follows [13]:

+. × .
√

.X1. − . + . + . × .X2.X1.X3.3.X2.X3, (1)

where X1, X2, and X3 are variables and 3 is a constant; ‘‘.’’ is
element separator for easy reading. The above expression is termed
Karva notation or a K-expression [17,25]. A K-expression can be
represented by a diagram which is an ET. For example, the above
sample gene can be expressed as in Fig. 3.

The conversion starts from the first position in the K-
expression, which corresponds to the root of the ET, and reads
through the string one by one [13] The above GEP gene can also
be expressed in a mathematical form as

X1((X1 + 3) − (X2 × X3)) +
√

(X2 + X1). (2)
An ET can inversely be converted into a K-expression by recording
the nodes from left to right in each layer of the ET, from the root
layer down to the deepest one to form the string. As previously
mentioned, GEP genes have fixed length, which is predetermined
for a given problem. Thus, what varies in GEP is not the length of
the genes but the size of the corresponding ETs [13]. This means
that there exist a certain number of redundant elements, which
are not useful for genome mapping. Hence, the valid length of a K-
expressionmay be equal to or less than the length of the GEP gene.
To guarantee the validity of a randomly selected genome, GEP em-
ploys a head–tailmethod. EachGEP gene is composed of a head and
a tail. The head may contain both function and terminal symbols,
whereas the tail may contain only terminal symbols [13,17,25].

A basic representation of the GEP algorithm is presented in
Fig. 4 [26]. In GEP, the individuals are selected and copied into
the next generation according to the fitness by roulette wheel
sampling with elitism. This guarantees the survival and cloning
of the best individual to the next generation. Variation in the
population is introduced by conducting single or several genetic
operators on selected chromosomes, which include crossover,
mutation, and rotation. The rotation operator is used to rotate two
subparts of the element sequence in a genome with respect to a
randomly chosen point. It can also drastically reshape the ETs. As
an example, the following gene [13]

+ . + . × .X2.X1.X3.3.X2.X3.+. × .
√

.X1.− (3)

rotates the first five elements of gene (1) to the end. Only the
first seven elements are used to construct the solution function
(X2 + X1) + (X3 × 3), with the corresponding expression shown in
Fig. 5 [13].

3. Modeling of a CSB

The enhanced performance characteristics of steel beams are
generally achieved bymany processes such as castellation. The use

Fig. 4. A basic representation of the GEP algorithm.

Fig. 5. Example of expression trees (ETs).

of a CSB plays an important role in the structural performance of
steel beams [3]. In its current state, behavior modeling of a CSB
is more difficult than that of normal I-section beams. In order to
provide an accurate assessment of the performance characteristics
of CSBs, the effects of all influencing parameters should be
incorporated into the model development. In this study, the GEP
approachwas utilized to obtain ameaningful relationship between
the load capacity of a CSB (P) and the influencing variables, as
follows:

P = f (Fyw, hc, B, tw, tf , S, L, LC), (4)

where

Fyw (MPa): Minimum web yield stress
hc (mm): Overall depth
B (mm): Width of flange
tw (mm): Web thickness
tf (mm): Flange thickness
S (mm): Minimum width of the web post
L (m): Span of castellated beam
LC: Indicator variable representing different loading conditions
1: One-point load
2: Two-point load
3: Distributed load.

The above variables were chosen as the predictor variables on the
basis of a literature review [4] and a trial study.



4 A.H. Gandomi et al. / Journal of Constructional Steel Research ( ) –

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy
F

re
qu

en
cy

74 278 4822 687 891

PExp. (kN)

1096 More

0

5

10

15

20

25

30

35

One-point
load

Diistributed    
load

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

Frequency
Cumulative%

0

5

10

15

20

25

0

5

10

15

20

25

0

2

4

6

8

10

12

0

5

10

15

20

25

F
re

qu
en

cy

20%

0%

60%

100%

400%

800%

230 265 3300 334 300

Fyw (MPa)

0 403 More

hc (mm)

67 90 1112 135 158

B (mm)

8 180 More2229 306 384 461 539 6616 More

3.6 4.9 6.3 7.6 9.0 1

tw (mm)

10.3 More 4.6 7.3 110.0 12.8 15.5

tf (mm)

5 18.2 More

0%

20

40

60

80

10

0%

20

40

60

80

10

0%

20

40

60

80

10

%

0%

0%

0%

0%

00%

0

4

8

12

16

20

F
re

qu
en

cy

%

0%

0%

0%

0%

00%
F

re
qu

en
cy

%

0%

0%

0%

0%

00%

0

5

10

15

20

25

0

5

10

15

20

25

30

L (m)

116 145 1174 More

0

5

10

15

20

25

30

00%

1100%

880%

660%

220%

440%

a

c

e

g

b

d

f

h

i

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

Fig. 6. Histograms of the variables used for model development.

3.1. Experimental database

A reliable database was obtained from the literature to develop
the models. The database contains 47 test results for the load
capacity of CSBs carried out by several researchers [1,27–32] and
presented by Amayreh and Saka [4]. To visualize the distribution
of the samples, the data are presented by frequency histograms

(Fig. 6). The descriptive statistics of the database used in this study
are given in Table 1. The complete list of the data is given in Table 2.

Overfitting is one of the major problems in machine learning
generalization. An efficient approach to prevent overfitting is
to test the derived models on a validation set to find a better
generalization [12]. This strategy was considered in this study
for improving the generalization of the models. For this aim, the
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Table 1
Descriptive statistics of the variables used for model development.

LC Fyw (MPa) hc (mm) B (mm) tw (mm) tf (mm) S (mm) L (m) PExp (kN)

Mean – 314.894 419.862 112.481 6.741 9.497 110.604 2.095 250.417
Standard error – 4.959 15.500 4.048 0.246 0.488 8.317 0.171 25.658
Standard deviation – 34.000 106.260 27.750 1.685 3.345 57.017 1.171 175.905
Sample variance – 1156.014 11291.089 770.065 2.840 11.187 3250.943 1.370 30942.431
Kurtosis – 3.177 0.185 1.197 1.728 3.278 −1.497 4.496 28.351
Skewness – 1.043 0.339 0.567 0.690 1.242 0.095 2.095 4.675
Range 2 208 464.7 136.3 8.14 16.37 174.42 4.8 1226.5
Minimum 1 230 229 66.9 3.56 4.59 28.58 1 73.5
Maximum 3 438 693.7 203.2 11.7 20.96 203 5.8 1300
Sum – 14800 19733.5 5286.6 316.81 446.35 5198.41 98.46 11769.6

Table 2
The experimental database used for the model construction.

No. LC Fyw (MPa) hc (mm) B (mm) tw (mm) tf (mm) S (mm) L (m) PExp (kN) PGEP (kN) PLSR (kN)

1 One-point 320 380 150 7.1 10.7 40 5.8 176.5 148.3 74.6
2 One-point 335 500 150 7.1 10.7 100 5.8 73.5 132.0 221.8
3 One-point 290.3 451.8 123.4 7.55 10.72 150 2.14 285 269.2 221.0
4 One-point 293.2 606.2 145.6 7.31 11.4 200 1.5 280 297.0 337.7
5 One-point 335 440 150 7.1 10.7 70 5.8 145 134.0 177.7
6 One-point 294.7 524.8 124.4 7.03 10.79 180 2.6 280 239.1 212.3
7 Two-point 355 693.7 153.5 11.7 11.7 114.3 2.5 1300 1226.8 1149.0
8 Distributed 335 381 101.6 5.84 6.83 89 1.3 295 226.4 330.8
9 Distributed 320 229 76.2 5.84 9.58 38.1 1.32 147 141.6 105.9

10 One-point 290.8 451.4 123.9 7.51 10.7 150 1.15 275 282.5 266.5
11 One-point 352.9 380.5 66.9 3.56 4.59 66.55 1.83 94.8 158.9 150.2
12 Distributed 292.8 381 101.6 5.84 6.83 127 1.8 186 189.7 125.5
13 Distributed 292.8 381 127 9.14 14.02 63.5 1.8 249.1 312.6 365.5
14 One-point 352.9 380.5 66.9 3.56 4.59 66.55 1.22 100.9 156.2 179.8
15 Two-point 292.8 381 114.3 7.62 12.83 63.5 1.6 299 200.0 215.2
16 One-point 295.5 526.7 124.7 7.08 10.68 176 2 232 261.9 255.7
17 One-point 277 605.5 145.4 7.3 11.34 203 1.6 288 269.0 267.5
18 One-point 277 605.5 143.3 7.27 11.25 199 1.5 253 268.8 273.4
19 One-point 293.2 603.6 143.7 7.28 11.27 196 1 226 301.5 361.3
20 One-point 320 381 101.6 5.84 6.83 44.45 3 265.5 218.6 168.0
21 One-point 290 524.3 124.6 7.04 10.7 179 2.6 275 234.3 196.6
22 Distributed 335 229 76.2 5.84 9.58 38.1 1.32 137.2 157.4 164.8
23 One-point 320 381 101.6 5.84 6.83 34.93 3 269 237.7 171.9
24 One-point 304 460.4 103.1 7.21 10.73 143 1.1 267 274.0 307.3
25 Distributed 292.8 342.9 117.8 10.16 20.96 57.15 1.3 279.6 234.9 337.0
26 One-point 395 381 101.6 5.84 6.83 28.58 3 352 365.0 468.9
27 Distributed 292.8 266.7 101.6 6.35 9.83 44.5 1.5 113.7 131.4 63.6
28 Distributed 320 229 76.2 5.84 9.58 38.1 1.15 196 137.7 114.1
29 One-point 290.8 451.6 124.1 7.62 10.66 146 2 280 280.2 239.9
30 Distributed 230 280 100 10.8 5.7 40 3.33 194.1 314.4 322.5
31 One-point 335 381 101.6 5.84 6.83 127 1.6 290 237.9 261.8
32 Distributed 292.8 381 101.6 5.84 6.83 101.6 2.4 89 174.1 106.5
33 One-point 335 381 101.6 5.84 6.83 127 2.4 303.4 227.8 222.9
34 One-point 352.9 380.5 66.9 3.56 4.59 66.55 2.44 84.4 158.9 120.5
35 One-point 438 381 101.6 5.84 6.83 165.1 3.5 277.2 298.2 558.4
36 Distributed 292.8 381 101.6 5.84 6.83 88.9 2.5 89 170.5 106.8
37 Distributed 335 381 101.6 5.84 6.83 101.6 1.37 300 229.5 322.3
38 Distributed 335 381 101.6 5.84 6.83 165.1 1.6 358.6 249.0 285.6
39 One-point 304 459.6 103 7.15 10.7 157 2.3 273 254.8 236.5
40 One-point 290 524.3 124.4 7.02 10.73 176 1.35 280 257.8 255.9
41 One-point 295.5 526.1 124.7 7.08 10.77 176 1.35 260 271.0 284.9
42 One-point 335 229 76.2 5.84 9.58 38.1 1.32 117.6 148.6 125.6
43 Distributed 335 381 101.6 5.84 6.83 165.1 1.75 310.3 247.3 278.3
44 One-point 294.7 524.1 124.3 7.07 10.73 177 1.35 240 269.5 279.4
45 Two-point 352.9 380.5 66.9 3.56 4.59 66.55 1.22 92.7 163.9 199.4
46 Distributed 292.8 381 203.2 10.16 19.89 63.5 1.3 310.5 282.1 352.5
47 One-point 297.3 450.3 123.4 7.54 10.68 150 1.15 279 295.5 294.9

available data setswere randomly divided into learning, validation,
and testing subsets. The learning data were taken for training
(genetic evolution). The validation data were used to specify the
generalization capability of the models on data they did not train
on (model selection). Thus, both the learning and the validation
data were involved in the modeling process and were categorized
into one group referred to as ‘‘training data’’. The model with the
best performance on both the learning and the validation data sets
was finally selected as the outcome of the runs. The testing data

were further employed tomeasure the performance of the optimal
model obtained by GEP on data that played no role in building the
models. To obtain consistent data division, several combinations
of the training and testing sets were considered. The selection
was in a way that the maximum, minimum, mean, and standard
deviation of parameters were consistent in the training and testing
data sets. Of the 47 data sets, 38 data vectors were taken for the
training process (30 sets for learning and 8 sets for validation). The
remaining 9 sets were used for the testing of the derived model.
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3.2. Performance measures

The best model was chosen on the basis of a multi-objective
strategy as follows.

i. The simplicity of the model, although this was not a predomi-
nant factor.

ii. Providing the best fitness value on the learning set of data.
iii. Providing the best fitness value on a validation set of data.

The first objective was controlled by the user through the
parameter settings (e.g., number of genes or head size). For
the other objectives, the following objective function (OBJ) was
constructed as a measure of how well the model predicted output
agreeswith the experimental results. The best GEPmodelwas then
deduced by the minimization of the following function:

OBJ =


No.Learning − No.Validation

No.Training


MAELearning

R2
Learning

+
2No.Validation
No.Training

MAEValidation

R2
Validation

, (5)

where No.Train, No.Learning, and No.Validation are respectively the
number of training, learning, and validation data. R and MAE are
respectively the correlation coefficient and mean absolute error
given in the form of the following relationships:

R =

n∑
i=1

(hi − hi)(ti − ti)
n∑

i=1
(hi − hi)2

n∑
i=1

(ti − ti)2
(6)

MAE =

n∑
i=1

|hi − ti|

n
, (7)

inwhich hi and ti are respectively the actual and calculated outputs
for the ith output; hi and ti are the average of the actual and
calculated outputs, and n is the number of samples. It is well
known that R alone is not a good indicator for predicting the
accuracy of amodel. This is because, on equal shifting of the output
values of a model, the R value does not change. The constructed
objective function takes into account the changes of R and MAE
simultaneously. Higher R and lower MAE values result in lowering
OBJ, and hence indicate a more precise model. In addition, the
above function takes the effects of different data divisions into
account for the learning and validation data.

3.3. Development of an empirical model using GEP

Eight input parameters, Fyw, hc, B, tw, tf , S, L, and LC , were used
to create the GEP model. Various parameters involved in the GEP
predictive algorithm are shown in Table 3. The parameter selection
will affect the model generalization capability of GEP. Several
runs were conducted to come up with a parameterization of GEP
that provided enough robustness and generalization to solve the
problem. The number of programs in the population that GEP will
evolve is set by the population size (number of chromosomes).
A run will take longer with a larger population size. The proper
population size depends on the number of possible solutions
and the complexity of the problem. Three levels were set for
the population size. The chromosome architectures of the models
evolved by GEP include the head size and the number of genes.
The head size determines the complexity of each term in the
evolved model. The number of terms in the model is determined
by the number of genes per chromosome. Each gene codes for
a different sub-expression tree or sub-ET. Three optimal levels

Table 3
Parameter settings for the GEP algorithm.

Parameter settings

General

Chromosomes 50, 150, 300
Genes 1, 2, 3
Head size 3, 5, 8
Tail size 9
Dc size 9
Gene size 26
Linking function Addition

Complexity increase

Generations without change 2000
Number of tries 3
Maximum complexity 5

Genetic operators

Mutation rate 0.044
Inversion rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1

Numerical constants

Constants per gene 2
Data type Integer
Lower bound −10
Upper bound 10

were considered for the head size and the number of genes. For
the number of genes greater than 1, the addition linking function
was used to link the mathematical terms encoded in each gene.
One level was considered for the other parameters based on some
previously suggested values [13,19–21] and also after making
several preliminary runs and observing the performance behavior.
There are 3×3×3 = 27 different combinations of the parameters.
All of these combinations were tested, and 10 replications for
each combination were carried out. Therefore, the overall number
of runs was equal to 27 × 10 = 270. The period of time
acceptable for evolution to occur without improvement in best
fitness is set via the generations without change parameter. After
2000 generations considered herein, a mass extinction or a neutral
gene was automatically added to the model. In this study, basic
arithmetic operators and mathematical functions were utilized to
get the optimum GEP model. The mean absolute error function
was used to calculate the overall fitness of the evolved programs.
The program was run until there was no longer any significant
improvement in the performance of themodels. TheGEP algorithm
was implemented using GeneXproTools [33].

3.3.1. GEP-based formulation for the load capacity of a CSB
The GEP-based formulation of the failure load (P) in terms of

Fyw, hc, B, tw, tf , S, L, and LC is as given below:

PGEP(kN) = tw


L


Fyw − B

S
− L


+ (tw − 4)(tw − LC)

+
3


(hc + Fyw)(Fyw − tw − 216)



− (tf − LC)2 + ( 3

tf + hc − 10)


t2w −

S
6


. (8)

The expression tree of the above formulation is given in Fig. 7.
A comparison of the predicted against experimental failure load
values is shown in Table 2 and Fig. 8.
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Fig. 7. Expression tree for the load capacity of a CSB; where d1 = LC, d2 =

Fyw, d3 = hc , d4 = B, d5 = tw, d6 = tf , d7 = S, d8 = L.

Fig. 8. Experimental versus predicted failure load values using the GEP model.

3.4. Development of an empirical model using regression analysis

In the conventional material modeling process, regression
analysis is an important tool in building models. In the present
study, a multivariable least squares regression (LSR) analysis [34]
was initially performed to get an idea of the predictive power of the

Fig. 9. Experimental versus predicted failure load values using the LSR model.

Fig. 10. Contributions of the predictor variables in the GEP model.

GEP technique in comparison with a classic statistical approach.
The LSR method is extensively used in primary regression analysis
due to its interesting nature. LSR minimizes the sum-of-squared
residuals for each equation, accounting for any cross-equation
restrictions on the parameters of the system. If no restrictions
exist, this technique becomes identical to estimating each equation
by single-equation ordinary least squares. The EViews software
package [35] was used to perform the regression analysis. The
formulation of the failure load (P), for the best results using the
LSR analysis, is as given below:

PLSR.(kN) = 19.564LC + 3.926Fyw + 0.937hc − 0.455B

+ 111.794tw − 19.869tf − 0.403S − 48.641L − 1772.193. (9)

A comparison of the experimental against predicted failure load
values is shown in Table 2 and Fig. 9.

4. Sensitivity analysis

Sensitivity analysis is of utmost concern for selecting the
important input variables. The contribution of each predictor
variable in the GEP model was evaluated through a sensitivity
analysis. For this aim, frequency values of the input variables were
obtained. A frequency value equal to 1.00 for an input indicates that
this variable has appeared in 100% of the best 30 programs evolved
by GEP. This methodology is a common approach in GP-based
analyses [13–15]. The frequency values of the predictor variables
are presented in Fig. 10. According to these figures, the failure load
is more sensitive to LC, Fyw , and tw . This can be regarded as an
expected case from a structural engineering point of view.

5. Performance analysis

A new model was developed for the estimation of the failure
load upon a reliable database. Based on a logical hypothesis [36], if
a model gives R > 0.8, and the MAE values are at the minimum,
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Fig. 11. The ratio between the experimental and predicted failure load values with respect to the design parameters (average = 0.988).

there is a strong correlation between the predicted and measured
values [23]. Themodel can therefore be judged as very good. Based
on the results, the proposed GEP model with high R and low MAE
values is able to predict the target values to an acceptable degree
of accuracy. The performance of the model on the training and
testing data suggests that it has both good predictive ability and
generalization performance.

The models derived using soft computing techniques (e.g., neu-
ral networks or GP-based approaches) mostly have a predictive
capability within the data range used for their development. The
amount of data used for the training process of these techniques
is an important issue, as it bears heavily on the reliability of the fi-
nal models. To cope with this limitation, Frank and Todeschini [37]
argue that the minimum ratio of the number of objects over the
number of selected variables for model acceptability is 3. They also
suggest that considering a ratio equal to 5 is more reasonable. In
the present study, this ratio is higher, and is equal to 47/8 = 5.9.
The above facts ensure that the final GEP model has prediction
power and is not a chance correlation. Furthermore, new criteria
recommended by Golbraikh and Tropsha [38] were checked for
the external validation of the models on the validation data sets.
It is suggested that at least one of the slopes of the regression
lines (k or k′) through the origin should be close to 1. The perfor-
mance indices of m and n should be lower than 0.1. Also, either
the squared correlation coefficient (through the origin) between

Table 4
Statistical parameters of the GEP model for external validation.

Item Formula Condition GEP

1 R R > 0.8 0.904
2 k =

∑n
i=1(hi×ti)

h2i
0.85 < K < 1.15 1.003

3 k′
=

∑n
i=1(hi×ti)

t2i
0.85 < K ′ < 1.15 0.974

4 m =
R2−Ro2

R2
m < 0.1 −0.225

5 n =
R2−Ro2

R′2 , n < 0.1 −0.203

where Ro2 = 1−

∑n
i=1(ti−hoi )

2∑n
i=1(ti−t̄i)2

, ho
i = k× ti 1.000

Ro′2
= 1−

∑n
i=1(hi−toi )2∑n
i=1(hi−h̄i)2

, toi = k′
×hi 0.983

the predicted and experimental values (Ro2) or the coefficient be-
tween the experimental and predicted values (Ro′2) should be close
to 1 [23]. The considered validation criteria and the relevant re-
sults obtained by themodels are presented in Table 4. The results of
the model validity indicate that the derived GEP model is strongly
valid.

In addition, Fig. 11 shows the ratio of the experimental to
the GEP predicted failure against different parameters. As the
scattering increases in these figures, the accuracy of the model
decreases. It can be observed that, with the exception of LC , the
scattering slightly decreases with increasing different parameters.
In the case of LC , the results do not exhibit any noticeable
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trend. It is worth noting that the observed deviation between the
experimental and predicted failure load is not only due to the
deficiency of the proposed model. It can partly be attributed to
uncertainties, errors, and inconsistencies in the data used for the
training and testing of the model.

The results presented in Figs. 8 and 9 indicate that the GEP-
based formula significantly outperforms the LSR model on both
the training and the testing sets. However, no rational model has
been developed for the prediction of failure load including the
variables considered in this study. Thus, it is not possible to conduct
a comparative study between the results of this research and those
in hand.

Note that one of the major advantages of the GEP approach
over traditional regression analysis is its ability to derive explicit
relationships for failure load without assuming prior forms of the
existing relationships. The best solution (equation) evolved by this
technique is determined after controlling numerous preliminary
models, even millions of linear and nonlinear models. However,
one of the goals of introducing expert systems, such as the GP-
based approaches, into the design processes is better handling of
the information in the pre-design phase. In the initial steps of
design, information about the features and properties of targeted
output or process are often imprecise and incomplete [39].
Nevertheless, it is idealistic to have some initial estimates of
the outcome before performing any extensive laboratory work.
The GEP approach employed in this research is based on the
data alone to determine the structure and parameters of the
models. Thus, the derived constitutive models can be particularly
valuable in the preliminary design stages. For more reliability,
the results of the GEP-based analyses are suggested to be treated
as a complement to conventional computing techniques (such
as the finite element method). In any case, the importance of
engineering judgment in the interpretation of the results obtained
should not be underestimated. In order to develop a sophisticated
prediction tool, GEP can be combinedwith advanced deterministic
models. Assuming that the deterministic model captures the key
physical mechanisms, it needs appropriate initial conditions and
carefully calibrated parameters to make accurate predictions. An
idea could be to calibrate the parameters by the use of GEP which
takes into account historic data sets as well as the laboratory
test results. This allows integrating the uncertainties related to
testing conditions which the conventional constitutive models do
not explicitly account for [23].

6. Conclusion

A robust variant of GP, namely GEP, was utilized to formulate
the load capacity of castellated steel beams. An accurate empirical
model was derived for the prediction of the failure load. A reliable
database from previously published failure load test results was
used to develop the model. The following conclusions are drawn
based on the results presented.

• The proposed GEP-based model is capable of predicting the
failure loads of CSBs with high accuracy. The validity of the
model was tested for a part of test results beyond the training
data domain. Furthermore, the GEP predictionmodel efficiently
satisfies the conditions of different criteria considered for its
external validation. The validationphases confirm the efficiency
of the model for its general application to the load capacity
estimation of CSBs.

• Due to the nonlinearity in collapse behavior of CSBs, the
GEP model produces considerably better outcomes than the
multivariable linear regression-based model.

• The proposedmodel simultaneously takes into account the role
of several important factors representing the failure load of CSB
behavior.

• They derived equation is very simple and can readily be used
for practical pre-planning and pre-design purposes via hand
calculations.

• An observation from the results of the sensitivity analysis is that
the most important parameters governing the behavior of the
load capacity of CSBs are the loading condition, minimum web
yield stress, and web thickness.

• The constitutive equation derived using GEP is basically
different from the conventional constitutive models based on
first principles (e.g., elasticity and plasticity theories) [23]. One
of the distinctive features of the GEP-based model is it is
based on the experimental data rather than on assumptions
made in developing the conventional models. Consequently, as
more data become available, this model can be retrained and
improved without repeating the development procedures from
the beginning.
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